主辦單位:煤炭科學研究總院出版傳媒集團、中國煤炭學會學術期刊工作委員會
首頁 > 期刊 > 期刊集群 > 全部期刊 > 《礦業科學技術學報(英文)》
礦業科學技術學報(英文)

期刊英文名:International Journal of Mining Science and Technology

  《礦業科學技術學報》(International Journal of Mining Science and Technology),雙月刊,創刊于1990年,原名《中國礦業大學學報(英文版)》,是由中國礦業大學主辦與國際著名出版機構Elsevier合作出版的礦業及煤炭科學技術方面的國際性學術刊物,美國《工程索引》(Ei Compendex)收錄期刊。
  • 摘要:<正>Authors are required to read the following instructions carefully before preparing a manuscript for submission.For detailed information,please log on http://www.elsevier.com/locate/jcumt Aims and Scope:International Journal of Mining Science and Technology.publishes original research papers covering all aspects of mining,including mining engineering,safety technology and engineering,mineral processing,coal geology,
  • 作者(Author):Liu Chao,Li Shugang,Cheng Cheng,Xue Junhua

    摘要:In order to effectively monitor the concealed fault activation process in excavation activities, based on the actual condition of a working face containing faults with high outburst danger in Xin Zhuangzi mine in Huainan, China, we carried out all-side tracking and monitoring on the fault activation process and development trend in excavation activities by establishing a microseismic monitoring system. The results show that excavation activities have a rather great influence on the fault activation. With the working face approaching the fault, the fault activation builds up and the outburst danger increases; when the excavation activities finishes, the fault activation tends to be stable. The number of microseismic events are corresponding to the intensity of fault activation, and the distribution rules of microseismic events can effectively determine the fault occurrence in the mine. Microseismic monitoring technique is accurate in terms of detecting geologic tectonic activities, such as fault activations lying ahead during excavation activities. By utilizing this technique, we can determine outburst danger in excavation activities in time and accordingly take effective countermeasures to prevent and reduce the occurrence of outburst accidents.
  • 作者(Author):Sun Jian,Hu Yang,Zhao Guangming

    摘要:A water-resistant key strata model of a goaf floor prior to main roof weighting was developed to explore the relationship between water inrush from the floor and main roof weighting. The stress distribution,broken characteristics, and the risk area for water inrush of the water-resistant key strata were analysed using elastic thin plate theory. The formula of the maximum water pressure tolerated by the waterresistant key strata was deduced. The effects of the caved load of the goaf, the goaf size prior to main roof weighting, the advancing distance of the workface or weighting step, and the thickness of the waterresistant key strata on the breaking and instability of the water-resistant key strata were analysed.The results indicate that the water inrush from the floor can be predicted and prevented by controlling the initial or periodic weighting step with measures such as artificial forced caving, thus achieving safe mining conditions above confined aquifers. The findings provide an important theoretical basis for determining water inrush from the floor when mining above confined aquifers.
  • 作者(Author):Lu Yiyu,Ge Zhaolong,Yang Feng,Xia Binwei,Tang Jiren

    摘要:A method of hydraulic grid slotting and hydraulic fracturing was proposed to enhance the permeability of low permeability coal seam in China. Micro-structural development and strength characteristics of coal were analysed to set up the failure criterion of coal containing water and gas, which could describe the destruction rule of coal containing gas under the hydraulic measures more accurately. Based on the theory of transient flow and fluid grid, the numerical calculation model of turbulence formed by high pressure oscillating water jet was used. With the high speed photography test, dynamic evolution and pulsation characteristics of water jet water analysed which laid a foundation for mechanism analysis of rock damage under water jet. Wave equation of oscillating water jet slotting was established and the mechanism of coal damage by the impact stress wave under oscillation jet was revealed. These provide a new method to study the mechanism of porosity and crack damage under high pressure jet.Fracture criterion by jet slotting was established and mechanism of crack development controlled by crack zone between slots was found. The fractures were induced to extend along pre-set direction,instead of being controlled by original stress field. The model of gas migration through coal seams after the hydraulic measures for grid slotting and fracking was established. The key technology and equipment for grid slotting and fracking with high-pressure oscillating jet were developed and applied to coal mines in Chongqing and Henan in China. The results show that the gas permeability of coal seam is enhanced by three orders of magnitude, efficiency of roadway excavation and mining is improved by more than 57%and the cost of gas control is reduced by 50%.
  • 作者(Author):Zhao Liang,Ting Ren,Wang Ningbo

    摘要:Large scale open cut coal mining operations have significant impacts to groundwater in surrounding areas in both active and post-mining phases. The prediction of water inflows into a surface mine excavation is one of the many components involved in mine design phase. Groundwater performance also reacts to mining activities from the operational, economic and safety implications perspective. Under NSW planning legislation, as part of the comprehensive risk assessment, a groundwater impact assessment has to be conducted for a coal project to predict and mitigate the impacts in consideration of the government requirements. In this paper, the groundwater assessment modelling of mine pits was discussed in predicting of groundwater inflows and reviewing analytical and numerical approaches. A methodology of groundwater impact assessment for an open cut mine in NSW with a three-dimensional groundwater flow model Modflow Surfact demonstrated its functions in simulating the project’s impacts on the groundwater regime. The key findings with mitigations are discussed and recommended in the paper to reduce impacts on groundwater and fulfil regulation requirements in NSW.
  • 作者(Author):Wang Fangtian,Duan Chaohua,Tu Shihao,Liang Ningning,Bai Qingsheng

    摘要:While the fully-mechanized longwall mining technology was employed in a shallow seam under a room mining goaf and overlained by thin bedrock and thick loose sands, the roadway pillars in the abandoned room mining goaf were in a stress-concentrated state, which may cause abnormal roof weighting, violent ground pressure behaviours, even roof fall and hydraulic support crushed(HSC) accidents. In this case,longwall mining safety and efficiency were seriously challenged. Based on the HSC accidents occurred during the longwall mining of 3-1-2 seam, which locates under the intersection zone of roadway pillars in the room mining goaf of 3-1-1 seam, this paper employed ground rock mechanics to analyse the overlying strata structure movement rules and presented the main influence factors and determination methods for the hydraulic support working resistance. The FLAC3 D software was used to simulate the overlying strata stress and plastic zone distribution characteristics. Field observation was implemented to contrastively analyse the hydraulic support working resistance distribution rules under the roadway pillars in strike direction, normal room mining goaf, roadway pillars in dip direction and intersection zone of roadway pillars. The results indicate that the key strata break along with rotations and reactions of the coal pillars deliver a larger concentrated load to the hydraulic support under intersection zone of roadway pillars than other conditions. The ‘‘overburden strata-key strata-roadway pillars-immediate roof" integrated load has exceeded the yield load that leads to HSC accidents. Findings in HSC mechanism provide a reasonable basis for shallow seam mining, and have important significance for the implementation of safe and efficient mining.
  • 作者(Author):Li Xiangchun,Yang Chunli,Ren Ting,Nie Baisheng,Zhao Caihong,Liu Shuiwen,Jiang Tao

    摘要:Coal exhibits different creep behaviours when filled with different amounts of gas. Creep tests of coal filled with 0 and 0.5 MPa gas were performed, and strain under different axial stress was compared.The three creep constitutive models which were analysed using the method fitting experimental data for determining which creep model can reflect the creep process of the test best. The results show that the deformation of coal filled with 0.5 MPa gas is more higher than that of coal filled with 0 MPa gas under the same axial stress. Gas plays a positive effect on the deformation of coal process and will accelerate creep process. And gas will reduce coal intensity and change coal creep properties.Compared with Nishihara Model and Extensional Nishihara Model, Burgers Model can reflect the three stages of creep process of coal filled with gas better. The research results can contribute to reveal coal and gas outburst mechanism.
  • 作者(Author):Wei Lu,Ying-Jiazi Cao,Jerry C.Tien

    摘要:Spontaneous combustion of coal seam has been and continues to be a big problem in coal mines. It could pose great threat to the safety of the whole mine and all miners, especially when it occurs in or nearby coal mines. Besides, environment of area surrounded mines during combustion can be threatened where large amount of toxic gases including CO2, CO, SO2 and H2S can be leased by fire in mine. Hence, it is important and significant for scholars to study the controlling and preventing of the coal seam fire. In this paper, the complicated reasons for the occurrence and development of spontaneous combustion in coal seam are analysed and different models under various air leakage situations are built as well. Based on the model and approximately calculation, the difficulty of fire extinguishment in coal seam is pointed out as the difficulty and poor effect to remove the large amount of heat released. Detailed measurements about backfilling and case analyses are also provided on the basis of the recent ten years’ practice of controlling spontaneous combustion in coal seams in China. A technical fire prevention and control method has been concluded as five steps including detection, prevention, sealing, injection and pressure adjustment. However, various backfill materials require different application and environmental factors, so in this paper, analyses and discussion about the effect and engineering application of prevention of spontaneous combustion are provided according to different backfilling technologies and methods. Once the aforementioned fire prevention can be widely applied and regulated in mines, green mining will be achievable concerning mine fire prevention and control.
  • 作者(Author):Chang Ping,Xu Guang

    摘要:The increasing use of diesel-powered equipment in confined spaces(underground mines) has the potential to over expose underground miners under the threat of diesel particulate matter(DPM). Miners in underground mines can be exposed to DPM concentrations far more than works in other industries. A great number of animal and epidemiological studies have shown that both short-term and long-term DPM exposure have adverse health effect. Based on reviews of related studies, especially some recent evidence, this paper investigated the long and short-term health effects based on animal studies and epidemiological studies. The exposure-response relationship studies were also explored and compared to the current DPM regulation or standards in some countries. This paper found that the DPM health effect studies specifically for miners are not sufficient to draw solid conclusions, and a recommendation limit of DPM concentration can be put in place for better protection of miners from DPM health risk. Current animal studies lack the use of species that have similar lung functions as human for understanding the cancer mode of action in human. And finally, the DPM health hazard will continue to be a challenging topic before the mode of action and reliable exposure-response relationship are established.
  • 作者(Author):Pan Rongkun,Fu Dong,Yu Minggao,Chen Lei

    摘要:In the coal mining process, the gas contained in the coalbed is one source of the most serious accident hazards. Stress releasing from the coal deposit is the main controlling factor that leads to such accidents.Based on the bedding of coal samples, the gas permeability well describes the evolution of fracture, so the paper carries out research on the permeability properties of coal under different unloading directions.The research obtains that when the stress unloading direction is perpendicular to bedding, more penetrating fractures and bedding fractures occur, and the permeability significantly increases. Although the axial stress reduced, the confining pressure makes the permeability of the bedding plane fracture exist under constant. The permeability obtained when the unloading direction was perpendicular to the bedding is 52 times larger than that when it is parallel to the bedding. The results show that the efficiency of gas drainage is impacted by the relative direction of gas drainage drilling in relation to the bedding orientations. The maximum amount of gas extraction when drilling is perpendicular to the bedding is 1.3 times than that when drilling is oblique to the bedding, and 1.75 times than that when drilling is parallel to the bedding.
  • 作者(Author):Zha Wenhua,Shi Hao,Liu San,Kang Changhao

    摘要:Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation characteristics of gob-side entry driving with narrow coal pillar is analysed, reasonable size of coal pillar and reasonable roadway excavation time after mining are achieved. Surrounding rock control technology and effective roadway side sealing technology are proposed and are taken into field practice. The results showed that a safer and more efficient mining of working face can be achieved. In addition, results of this paper also have important theoretical significance and valuable reference for surrounding rock control technology of gob-side entry driving with narrow coal pillar under special geological condition.
  • 作者(Author):Xuan Dayang,Xu Jialin

    摘要:Surface subsidence is a typical ground movement due to longwall mining, which causes a series of environmental problems and hazards. In China, intensive coal extractions are commonly operated under dense-populated coalfields, which exacerbates the negative subsequences resulted from surface settlement. Therefore, effective approaches to control the ground subsidence are in urgent need for the Chinese coal mining industry. This paper presents a newly developed subsidence control technology: isolated overburden grout injection, including the theory, technique and applications. Relevant procedures such as injection system design, grouting material selection, borehole layout, grout take estimation and injection process design are proposed. The applicability of this technology has been demonstrated through physical modelling, field measurements, and case studies. Since 2009, the technology has been successfully applied to 14 longwall areas in 9 Chinese coal mines. The ultimate surface subsidence factors vary from 0.10 to 0.15. This method has a great potential to be popularized and performed where longwall mining are implemented under villages and ground infrastructures.
  • 作者(Author):Shen Baotang,Brett Poulsen,Luo Xun,Qin Johnny,Ramesh Thiruvenkatachari,Duan Yi

    摘要:paper describes a recent study on using fly ash for backfilling abandoned room and pillar mines.Detailed investigations on fly ash properties such as the strength and stiffness of settled fly ash, flowability of fly ash grout, as well as chemistry and environmental aspects of fly ash backfill have been undertaken in the laboratory. Numerical modelling was also conducted to quantify the effects of fly ash backfill on the stability of underground pillars. The laboratory tests showed that with a solid concentration of approximate 50%, fly ash grout has an excellent flowability and very low viscosity. It is capable of penetrating and filling almost any voids underground if designed properly and settling as a reasonably stiff solid to provide support to the pillars. Several different types of strength tests proved that a consolidated fly ash should exhibit a friction angle above 42°. 3D numerical modelling on interaction between fly ash backfill and underground pillars has shown that fly ash backfill to 90% roadway height can raise the factor of safety(Fo S) of a marginally stable area to above 1.6, which is the number often used in rock engineering design for long term stability. Chemistry and leachate analysis of representative fly ash samples from a local power station showed that the elemental concentrations in the fly ash solid sample are lower than the allowed contaminant threshold and specific contaminant concentration levels. Geotechnical monitoring in the high risk areas of an abandoned mine has been carried out as part of the risk management and control for potential subsidence. The monitoring has been very helpful in understanding the ground behaviour around the abandoned mine which can provide timely information to the parties concerned in order to make correct decisions to control the subsidence risk.
  • 作者(Author):Liu Changyou,Yang Jingxuan,Yu Bin

    摘要:The rock-breaking mechanism and effect of confined blasting were analysed by blasting and impact dynamic mechanics, fluid dynamic mechanics, fracture mechanics as well as blasting experiment. The results showed that the fracturing of surrounding rock in confined blasting condition is the result of coaction of rock pre-cracking by shock wave and stress wave and the continuing expanding crackenhancement of confined medium, and the model of crack development of borehole surrounding rock in confined blasting condition was established. This study acquired the damage range of surrounding rock under the action of shock wave and stress wave, as well as the crack development characteristics of surrounding rock after the wedge-in confined medium into the crack space. Deep-hole confined blasting experiment on large rock showed that the high-efficient utilisation of in-hole explosive was achieved and the safety of rock blasting operation was ensured. Safe static rock-breaking under the action of high-efficient explosive blasting was achieved as well as the unification of super dynamic load of explosive blasting and static rock-breaking of water medium.
  • 作者(Author):Patrick Booth,Heidi Brown,Jan Nemcik,Ren Ting

    摘要:The prediction of gas emissions arising from underground coal mining has been the subject of extensive research for several decades, however calculation techniques remain empirically based and are hence limited to the origin of calculation in both application and resolution. Quantification and management of risk associated with sudden gas release during mining(outbursts) and accumulation of noxious or combustible gases within the mining environment is reliant on such predictions, and unexplained variation correctly requires conservative management practices in response to risk. Over 2500 gas core samples from two southern Sydney basin mines producing metallurgical coal from the Bulli seam have been analysed in various geospatial context including relationships to hydrological features and geological structures. The results suggest variability and limitations associated with the present traditional approaches to gas emission prediction and design of gas management practices may be addressed using predictions derived from improved spatial datasets, and analysis techniques incorporating fundamental physical and energy related principles.
  • 作者(Author):Zheng Chunshan,Mehmet Kizil,Chen Zhongwei,Saiied Aminossadati

    摘要:Coal permeability is a measure of the ability for fluids to flow through coal structures. It is one of the most important parameters affecting the gas drainage performance in underground coal mines. Despite the extensive research conducted on coal permeability, few studies have considered the effect of coal damage on permeability. This has resulted in unreliable permeability evaluation and prediction. The aim of this study is to investigate the effect of coal damage on permeability and gas drainage performance. The Cui-Bustin permeability model was improved by taking into account the impact of coal damage on permeability. The key damage coefficient of the improved permeability model is determined based on the published permeability data. A finite-element numerical simulation was then developed based on the improved permeability model to investigate the damage areas and the permeability distribution around roadway. Results showed that the tensile failure occurs mainly on the upper and lower sides of the roadway while the shear failure symmetrically occurs on the left and right sides. With the increase in the friction angle value, the damage area becomes small. A good agreement was obtained between the results of the improved permeability model(c = 3) and the published permeability data. This indicated a more accurate permeability prediction by the improved permeability model. It is expected that the findings of this study could provide guidance for in-seam gas drainage borehole design and sealing, in order to enhance the gas drainage performance and reduce gas emissions into underground roadways.
  • 作者(Author):Qin Johnny,Qu Qingdong,Guo Hua

    摘要:Computational fluid dynamics(CFD) simulation is an effective approach to develop and optimise gas drainage design for underground longwall coal mining. As part of the project supported by the Australian Government Coal Mining Abatement Technology Support Package(CMATSP), threedimensional CFD simulations were conducted to test and optimise a conceptual design which proposes using horizontal boreholes to replace vertical boreholes at an underground coal mine in Australia.Drainage performance between a vertical borehole and a horizontal borehole was first carried out to compare their capacity and effectiveness. Then a series of cases with different horizontal borehole designs were simulated to optimise borehole configuration parameters such as location, diameter, and number of boreholes. The study shows that the horizontal borehole is able to create low pressure sinks that protect the workings from goaf gas ingresses by changing goaf gas flow directions, and that it has the advantage to continuously maintain such low pressure sinks near the tailgate as the longwall advances. An example of optimising horizontal borehole locations in the longwall lateral direction is also given in this paper.
  • 作者(Author):Chen Xianzhan,Xue Sheng,Yuan Liang

    摘要:Xinji No. 2 underground coal mine extracts the coal seams #4 and #5. These two seams are highly gassy and gas drainage is required to control mine gas emission and reduce outburst risk. Because the seam permeability coefficient is very low and around 0.1 m~2/(MPa~2·d), a number of technologies have been trialled to enhance the seam permeability prior to gas drainage. Of these technologies trialled, the deep borehole presplitting blasting technology has been proven to be quite effective in increasing permeability. In Xinji No. 2 mine it doubled or sometimes tripled gas drainage volume. This paper describes the technology, its application in the enhancement of seam permeability in Xinji No. 2 coal mine, and its effect on gas drainage performance.
  • 作者(Author):Wang Gongda,Ren Ting,Zhang Lang,Shu Longyong

    摘要:The definition of ‘‘residual gas" can be found in different scenarios, such as the ‘‘fast" and ‘‘slow" desorption methods of measuring gas content and the sorption hysteresis test and gas management of coal mines, however, its meaning varies a lot in different contexts. The main aim of this paper is to discuss the existence of truly undesorbable residual gas in coal seam conditions and its impacts on sorption model and gas drainage efficiency. We believe the undesorbable residual gas does exist due to the observation of the extended slow desorption test and the sorption hysteresis test. The origin of undesorbable residual gas may be because of the inaccessible(closed or semi-closed) pores. Some gas molecules produced during coalification are stored in these inaccessible pores, since the coal is relatively intact in the coal seam condition, these gas molecules cannot escape during natural desorption and then create the undesorbable residual gas. Based on the existing adsorption models, we propose the improved desorption versions by taking into consideration the role of residual gas. By numerically simulating a gas drainage case, the gas contents after different drainage times are studied to understand the influence of residual gas content on gas drainage. The results indicate that the influence starts to be obvious even when the total gas content is at a high level, and the impact becomes more and more apparent with increasing drainage time. Our study shows that the existence of residual gas will impede the gas drainage and the total amount of recoverable coal seam methane may be less than expected.
  • 作者(Author):Luke D.Connell,Regina Sander,Michael Camilleri,Deasy Heryanto,Zhejun Pan,Nicholas Lupton

    摘要:Coal seams with high CO2 gas contents can be difficult to drain gas for outburst management. Coal has a high affinity for CO2 with adsorption capacities typically twice that of CH4. This paper presents an analysis of nitrogen injection into coal to enhance drainage of high CO2 gas contents. Core flooding experiments were conducted where nitrogen was injected into coal core samples from two Australian coal mining basins with initial CO2 gas contents and pressures that could be encountered during underground mining. Nitrogen effectively displaced the CO2 with mass balance analysis finding there was only approximately 6%–7% of the original CO2 gas content residual at the end of the core flood. Using a modified version of the SIMED II reservoir simulator, the core flooding experiments were history matched to determine the nitrogen and methane sorption times. It was found that a triple porosity model(a simple extension of the Warren and Root dual porosity model) was required to accurately describe the core flood observations. The estimated model properties were then used in reservoir simulation studies comparing enhanced drainage with conventional drainage with underground in seam boreholes. For the cases considered, underground in seam boreholes were found to provide shorter drainage lead times than enhanced drainage to meet a safe gas content for outburst management.
  • 作者(Author):Dennis J.Black

    摘要:Australian coal mines currently use gas content to assess outburst risk. The gas content threshold values for each mine are indirectly determined from measurement of gas volume liberated from 150 g coal samples during Q3 residual gas content testing. It has been more than twenty years since this method, known as desorption rate index(DRI), was presented to the Australian coal industry, and in that time, there have been significant changes in mining conditions and the outburst threshold limits used at the benchmark Bulli seam mines. NSW Regulations list matters to be considered in developing control measures to manage the risk of gas outburst, and specifies that gas content, or DRI method, is used as the basis for determining outburst control zone. Whilst Queensland Regulations state that a coal or rock outburst is a high potential incident, there is no guidance provided to assist mine operators to define outburst prone conditions. A research project is planned at UOW to investigate the application of the DRI method and other potentially significant factors, such as gas pressure, coal toughness and permeability, which can be utilised by mine operators to assess outburst risk and determine appropriate outburst threshold limits and controls.
  • 作者(Author):Abouna Saghafi

    摘要:Gas content of coal is mostly determined using a direct method, particularly in coal mining where mine safety is of paramount importance. Direct method consists of measuring directly the volume of gas desorbed from coal in several steps, from solid then crushed coal. In mixed gas conditions the composition of the desorbed gas is also measured to account for contribution of various coal seam gas in the mix. The determination of gas content using the direct method is associated with errors of measurement of volume of gas but also the errors associated with measurement of composition of the desorbed gas. These errors lead to uncertainties in reporting the gas content and composition of in-situ seam gas. This paper discusses the current direct method practised in Australia and potential errors and uncertainty associated with this method. Generic methods of estimate of uncertainties are also developed and are to be included in reporting gas content of coal. A method of direct measurement of remaining gas in coal following the completion of standard gas content testing is also presented. The new method would allow the determination of volume of almost all gas in coal and therefore the value of total gas content. This method is being considered to be integrated into a new standard for gas content testing.
  • 作者(Author):Jonathon C.Ralston,Chad O.Hargrave,Mark T.Dunn

    摘要:This paper explores the ongoing development and implementation of longwall automation technology to achieve greater levels of underground coal mining performance. The primary driver behind the research and development effort is to increase the safety, productivity and efficiency of longwall mining operations to enhance the underlying mining business. A brief review of major longwall automation challenges is given followed by a review of the insights and benefits associated with the LASC longwall shearer automation solution. Areas of technical challenge in sensing, decision support, autonomy and human interaction are then highlighted, with specific attention given to remote operating centres, proximity detection and systems-level architectures in order to motivate further automation system development.The vision for a fully integrated coal mining ecosystem is discussed with the goal of delivering a highperformance, zero-exposure and environmentally coherent mining operations.
  • 作者(Author):Jim Galvin

    摘要:Green mining is concerned with mining in a sustainable manner, such that the needs of the present are met without compromising future generations. The achievement of this objective depends on balancing social, environmental and economic objectives and has to have regard to both active mining operations and legacy issues associated with mine closure. Ground engineering has a critical role in achieving green mining objectives but its contribution is characterised by pervasive uncertainty. Uncertainty equates to risk. This means that ground engineering should be practiced within a risk management framework that aims to both prevent unwanted outcomes and to mitigate their consequences to an acceptable level. This keynote address presents the fundamentals of risk management and demonstrates its effectiveness by reference to improvements in the safety performance of the NSW coal sector over the past three decades.Nevertheless, ground control remains a mix of art and science, relying heavily on judgements which should be premised on knowledge, skill and experience(that is, competence). Risk management has now been enshrined in mining legislation and operating practice in Australia for over two decades.Notwithstanding this, near-hit and accident and incident investigations, commissions of inquiry and legal proceedings almost invariably identify deficiencies and opportunities for improvements necessary to achieve the objectives of sustainable mining. Three of the more important opportunities which have global application in relation to ground engineering are discussed. These relate to the vexing issue of defining competency in ground engineering; the criteria for undertaking rigorous risk assessment; and the need for ground engineers to become involved in mine rehabilitation and closure planning over the full life cycle of a mine, commencing at the prefeasibility stage.
  • 作者(Author):Ren Ting,Xu Jialin

    摘要:<正>The 9th International Symposium on Green Mining(9th ISGM)was co-hosted by the University of Wollongong(UOW)and China University of Mining and Technology(CUMT),Wollongong,NSW Australia,27–30th November 2016.A full-day was dedicated to an International Workshop on Coal and Rock Burst in response to the recent coal burst incidents in Australia.The conference

主辦單位:煤炭科學研究總院出版傳媒集團 中國煤炭學會學術期刊工作委員會

©版權所有2015 煤炭科學研究總院出版傳媒集團 地址:北京市朝陽區和平里青年溝東路煤炭大廈 郵編:100013
京ICP備11019815號-17  技術支持:云智互聯
147期红心水论坛